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Abstract: The present study aims to compare the performance of eight Machine Learning Techniques
(MLTs) in the prediction of hospitalization among patients with heart failure, using data from the
Gestione Integrata dello Scompenso Cardiaco (GISC) study. The GISC project is an ongoing study that
takes place in the region of Puglia, Southern Italy. Patients with a diagnosis of heart failure are enrolled
in a long-term assistance program that includes the adoption of an online platform for data sharing
between general practitioners and cardiologists working in hospitals and community health districts.
Logistic regression, generalized linear model net (GLMN), classification and regression tree, random
forest, adaboost, logitboost, support vector machine, and neural networks were applied to evaluate the
feasibility of such techniques in predicting hospitalization of 380 patients enrolled in the GISC study,
using data about demographic characteristics, medical history, and clinical characteristics of each
patient. The MLTs were compared both without and with missing data imputation. Overall, models
trained without missing data imputation showed higher predictive performances. The GLMN showed
better performance in predicting hospitalization than the other MLTs, with an average accuracy,
positive predictive value and negative predictive value of 81.2%, 87.5%, and 75%, respectively. Present
findings suggest that MLTs may represent a promising opportunity to predict hospital admission of
heart failure patients by exploiting health care information generated by the contact of such patients
with the health care system.
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1. Introduction

The sudden development of health technologies fostered the opportunity of measuring a large
amount of clinical data with the final aim to improve patients’ management [1]. Nowadays, physicians
and medical researchers can constantly monitor clinical data of each patient, allowing for accurate
tracking of the disease’s evolution. Such data are generally collected and stored in electronic health
records (EHR), which holds promise to improve efficiency and quality of healthcare, making data
more accessible, facilitating health information exchange and interoperability between healthcare
providers [2]. The benefits of EHR technology are even more relevant in chronic diseases, such as
cardiovascular disorders, where a lifelong disease management is crucial to avoid disease relapse (and
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its consequences, including, but not limited to, hospital readmissions, high cost of care, and premature
mortality), which represents a severe public health burden [3].

Heart failure (HF) represents a clear example of chronic cardiovascular disease requiring lifelong
management [4,5]. It is strongly related to the aging process [6], and it is associated with high healthcare
resource utilization [7] so that the improvement of HF management should be one of the primary goals
of current health organizations [8].

Stratifying HF patients according to their risk of disease relapse and consequent hospital admission
would be useful from both the clinical and economic standpoints. Identifying those HF patients at high
risk of hospital admission would be useful for the clinicians since they could focus on the management
of such patients to prevent potential disease relapse. From the point of view of health care planning,
this information would be useful in the allocation of economic resources. However, even though the
availability of a large amount of data would be a great opportunity to characterize better patients
suffering from chronic disease, it has been shown that it is extremely difficult to transform such complex
information in useful knowledge.

Machine learning techniques (MLTs) offer a new possibility in terms of the management of this
information. A growing body of literature shows MLT applications in cardiology, especially for
developing prediction models using both supervised and unsupervised methods [9]. In recent years,
MLTs have been increasingly used also in the field of HF research [10,11]. Those fields most frequently
investigated using MLTs are the identification and classification of HF cases, prediction of HF treatment
adherence, prediction of HF-related adverse events, and prediction of hospital admission/readmissions
of HF patients [10,11]. Prediction of hospital admission/readmission of HF patients and, in general,
heart disease patients, is of great interest given the healthcare resource burden related to hospital
admission/readmission. A recent study [12] showed an outperformance of random forest (RF) compared
to traditional logistic and Poisson regression in predicting HF readmissions. Conversely, another
study [13] showed no improvements using MLTs (RF, tree-augmented naive Bayesian network, and
a gradient-boosted model) compared to traditional techniques in predicting hospital readmissions
of HF patients. For what concerns specifically hospital admissions, a study compared five different
techniques (support vector machine (SVM), adaboost (AB), naive Bayes, K-likelihood ratio test, logistic
regression (LR)) and showed similar predictive performances [14]. Even though MLTs seem to be a
promising opportunity to predict hospital admission/readmission in HF patients, literature results are
still inconsistent.

The present study aims to compare the performance of several MLTs in the prediction of
hospitalization among patients with HF, using data from the Gestione Integrata dello Scompenso
Cardiaco (GISC) study [15]. We compared the following algorithms: LR, generalized linear model
net (GLMN), classification and regression tree (CART), logitboost (LB), AB, RF, SVM, and neural
network (NN).

2. Materials and methods

2.1. Gestione Integrata dello Scompenso Cardiaco (GISC) Study

Data analyzed in the present study have been derived from the GISC study. It is an ongoing
project, and it takes place in the region of Puglia, Southern Italy [15]. Patients with a diagnosis of HF
are enrolled in a long-term assistance program that includes the adoption of an online platform for
data-sharing between general practitioners and cardiologists working in hospitals and community
health districts. The diagnosis of HF is made according to the criteria of the European Society of
Cardiology (ESC) [5] using the patient’s clinical history, physical examination, and data obtained
from clinical tests (electrocardiogram, echocardiography, N-terminal pro-brain natriuretic peptide
(NT-proBNP)).

This informative database includes patients’ demographic and clinical information (anthropometric
characteristics, etiology of HF, presence of comorbidities, results of blood examination, and number of
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hospitalizations). Data are collected by cardiologists and family doctors involved in the primary care
of patients with HF.

The primary outcome of the present study is to compare the performance of eight machine
learning techniques in the prediction of hospitalization of patients with HF enrolled in the GISC project.
The secondary outcome is to identify predictors of hospitalization in such patients.

For the study, we analyzed data of 380 HF patients (with both preserved and reduced ejection
fraction (EF)) enrolled between 2011 and 2015. Patients were distributed as follows: 21% (reduced EF),
55% (mid-range EF), 24% (preserved EF). No standard follow-up schedule has been foreseen in this
study. In general, the follow-up was at least once a year, but, depending on clinical conditions and
medical judgement, it could be more frequent.

Out of 380 records, 110 had no missing data (complete cases). Among the 380 patients, 170 were
not hospitalized, and 210 had at least one hospital admission. The following patient’s characteristics
were considered in the analysis as potential predictors of hospitalization:

• Numerical variables: body mass index (BMI), age, heart rate, BNP, pulmonary pressure, serum
creatinine, mean years between clinical examinations at follow-up;

• Categorical variables: gender, the occurrence of myocardial infarction, etiology related to ischemic
cardiomyopathy, dilated cardiomyopathy or valvulopathy, presence of comorbidities, chronic
obstructive pulmonary disease (COPD) or anemia (dichotomous data), and New York Heart
Association (NYHA) class (ordinal data).

Descriptive statistics were reported as I quartile/median/III quartile for continuous variables
and percentages (absolute numbers) for categorical variables. A Wilcoxon–Kruskal–Wallis test was
performed for continuous variables and a Pearson chi-square test for categorical ones.

We transformed all the predictors into numerical variables, and we created dummy variables for
categorical predictors. All the continuous variables were rescaled into the range −1 and 1 and centered
on the mean [16].

2.2. Machine Learning Techniques

LR, GLMN, CART, RF, LB, AB, SVM and NN were applied to evaluate the feasibility of such
techniques in predicting hospitalization of patients with HF. We decided to compare these algorithms,
given their increasing popularity in clinical settings for prediction of binary outcomes and their
ability to detect complex relationships between the outcome and predictors and interactions between
covariates [17,18].

LR is perhaps the method most frequently used to predict the occurrence of an event in clinical
research [19]. The popularity of LR is mainly related to its ability to provide meaningful and
easy-to-interpret quantities such as odds ratios (ORs), which can provide clinical information on the
impact of predictors on the occurrence of the event of interest. However, LR is known to have some
limitations given its parametric assumptions and the difficulty to detect non-linearities and interactions
between covariates. LR was often used as a benchmark in studies aimed to compare different MLTs for
the prediction of the occurrence of a binary outcome [20,21].

GLMN is a regularized regression model computed to linearly combined lasso and ridge penalties
(L1 and L2) with a link function and a variance function to reduce linear model limitations [22].
GLMN is a technique that is often used in prediction settings where the researcher is interested in the
identification of a subset of covariates that are strong predictors of the outcome of interest. This model
works very well with data characterized by high collinearity among covariates [23].

CART and RF are tree-based techniques. CART is a technique that builds a simple decision tree
on the analyzed data [24]. It uses a recursive binary splitting algorithm to divide the space of the
predictors. After that, predictions are carried out in each region formed by the binary splitting. CARTs
are becoming very popular in clinical settings because they are simple to implement and easy to
interpret [18,25,26]. Despite their simplicity, CARTs often suffer from overfitting problems, which can
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often undermine their predictive reliability [23]. RF is an extension of CART. It works by constructing
one CART on several bootstrap replicates of the original data [27]. In addition to that, it allows us to
build each tree using only a subset of the available potential predictors. The final predictions are then
obtained by averaging the predictions of each tree. RF has been shown to perform very well in several
medical settings [28,29].

AB and LB are boosting algorithms that aim to combine several weak classifiers with improving
classification performance [30]. Each weak classifier is implemented using decision trees with one
single split. Each learned classifier is then combined in a weighted sum that returns the final boosted
algorithm. The LB algorithm is a generalization of the AB, i.e., the AB algorithm is considered as a
generalized additive model with binomial family and the logit link function [31]. These techniques
have been shown to have good predictive performances in many clinical applications [28,32,33].

SVM is an algorithm that was developed for binary classification settings with two classes [34].
SVM works by constructing hyperplanes of the covariates’ space that separates the observations
according to the class they belong to. The separation is carried out by augmenting the features’ space
using kernel functions to allow for non-linear relationships between the outcome and the covariates.
The use of such kernel functions allows the analysts to detect and model complex relationships, which
can be very common in clinical research. SVM showed good classification ability in several settings,
and it has been proven to be a good competitor of other MLTs [35–37].

NNs are a generalization of linear regression functions [38]. NNs are characterized by units,
called neurons, which are connected. In its simplest form, the neurons take the information from the
input units, i.e., the value of the predictors in the dataset, computed a weighted sum of the received
inputs and provide an output, which, in classification tasks, is the class predicted by the NN for each
observation. NNs are implemented using many parameters such that they can flexibly approximate
any smooth functions. NNs have been widely used in pattern recognition field [39–41] and they
have recently become very popular in medical research, being shown to outperform many other
MTLs [42–44].

2.3. Model Training and Testing

The goal of the analysis was to compare MLTs in terms of ability to correctly classify patients that
had at least one hospital admission and not to model time to the hospitalization. The study aims to
understand how MLTs can enhance the classification of hospitalizations in the defined period, i.e., five
years, and this has been shown to be a more sensitive question, noticeably in an MLT context than
other traditional approaches in modeling long-term events and mortality [45].

Model tuning and validation were carried out using a 5-fold cross-validation approach [23] on all
the patients available in the dataset. For each method, the optimal parameters values were chosen
with a grid search approach such that the cross-validated accuracy (the average proportion of correctly
classified observations across the 5 folds) was maximized. The model with the optimal parameters
was chosen as the final model to be compared with the others. The predictive abilities of MLTs were
assessed using the following measures: positive predictive value (PPV), negative predictive value
(NPV), sensitivity, specificity, accuracy, and area under the ROC curve (AUC). Each measure was
computed, averaging the value obtained on each resampling fold. We computed the Cohen’s Kappa
statistics of agreement [46], with their corresponding 95% confidence intervals (CIs), to measure the
degree of concordance of each pair of techniques in the predicted class.

Three different approaches were explored to handle missing data: Complete Case (CC) analysis,
i.e., only the patients with complete information for all the variables were included in the analysis,
imputation of missing values with median values for numerical variables and the most frequent
class for categorical variables, and imputation of missing data with K-nearest neighbors (KNN)
algorithm [47]. We will refer to these three approaches as CC, Median Imputation (M-I), and KNN
imputation (KNN-I). The imputation of missing data was implemented during the validation process,
as it was shown to provide more reliable insights on the predictive ability of the models [48]. We
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compared the performances of MLTs under all the approaches to test the sensitivity of each method to
different strategies for handling missing data.

A power analysis with a simulation-based approach was run to evaluate the minimum sample size
needed to properly train the MLTs [49]. A logistic regression was assumed to describe the association
between predictors and the presence of at least one hospital admission, assuming to estimate an
AUC of 70%, in line with previous findings [12,13], with a 10% margin of error and a percentage of
patients with at least one hospital admission of nearly 50% [50]. A minimum number of 340 records
was identified.

All the analyses were implemented using the R Statistical Software [51] (version 3.6.0) with the
following packages: glmnet [52] for the GLMN algorithm, rpart [53] for the CART algorithm, ranger [54]
for RF, caTools [55] for LB, adabag [56] for the AB algorithm, e1071 [57] for the SVM algorithm, and
nnet [58] for NNs. Model tuning and validation was performed using caret [59] package, the tidyverse
bundle of packages [60] was used for data management, functional programming and plots.

3. Results

The analyses considered 380 cases. The median duration of the follow-up was 1184 days (I quartile:
821 and III quartile: 1682). The distribution of the sample characteristics is reported in Table 1. Two
hundred and ten patients were hospitalized, the distribution of the hospitalizations according to the cause
of hospital admission was as follows: 84.76% HF, 15.24% other causes. In the sample there was a high
proportion of COPD patients, especially among those hospitalized Significant differences were observed
also for anemia prevalence (higher in the patients hospitalized, p-value 0.045). In addition to that, also,
creatinine levels and BNP were higher in patients hospitalized (p-value 0.021 and < 0.001, respectively).

Table 1. Sample characteristics. Continuous data are reported as I quartile/Median/III quartile,
categorical data are reported as percentage (absolute number).

Not Hospitalized
(N = 170)

Hospitalized
(N = 210) p-Value

Gender: Female 54% (92) 60% (125) 0.29
Age 72.0/78.0/83.0 73.0/79.0/83.0 0.357
BMI 25.78/29.33/33.21 25.49/29.37/34.75 0.99

Medical history
AMI 12% (21) 12% (26) 0.993

HF etiology—ischemic cardiomyopathy 15% (25) 22% (47) 0.058
HF etiology—dilated cardiomyopathy 9% (16) 10% (21) 0.847

HF etiology—valvulopathy 18% (30) 21% (45) 0.357
COPD 26% (45) 45% (94) <0.001

Anemia 15% (25) 23% (48) 0.045
Comorbidities 39% (67) 48% (101) 0.09

Clinical examination
Heart rate 75.0/90.0/100.0 80.0/90.0/94.25 0.098

BNP 850/1335/3000 1178/2228/3680 <0.001
Pulmonary pressure 35/40/47 35/41.5/52 0.051

NYHA class 0.914
2 24% (39) 26% (53)
3 67% (107) 66% (136)
4 9% (14) 8% (16)

Creatinine 0.800/1.000/1.208 0.810/1.070/1.450 0.021
Mean years between clinical examinations 0.625/1.600/2.900 0.900/1.800/2.900 0.281

BMI: body mass index; AMI: acute myocardial infarction; HF: heart failure; COPD: chronic obstructive pulmonary
disease; BNP: beta-type natriuretic peptide; NYHA: New York Heart Association.
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Overall, 270 records (71% of the subjects) showed missing information in at least one of the
variables. BMI and pulmonary pressure showed the highest percentages of missing values, i.e., 49%
and 42% respectively. Age, NYHA class, creatinine level, heart rate and BNP had percentages of
missing values between 3% and 5%. All the other variables had no missing information.

Tables 2–4 show the predictive performances of MLTs with the CC, M-I, and KNN-I approaches,
respectively. Predictive performances were higher when all the patients with missing information for
at least one variable were removed from the analysis. GLMN outperforms the other MLTs among those
implemented with CC analysis, with higher values of all the measures used to compare the algorithms.

Table 2. Performance of generalized linear model net (GLMN), logistic regression (LR), classification
and regression tree (CART), random forest (RF), adaboost (AB), logitboost (LB), support vector machine
(SVM), and neural network (NN) obtained with complete case (CC) analysis. The values represent
sensitivity, positive predictive value (PPV), negative predictive value (NPV), specificity and accuracy
averaged over the values obtained on each resample.

Technique Sensitivity PPV NPV Specificity Accuracy AUC

GLMN 77.8 87.5 75 85.7 81.2 80.6

LR 54.7 51.6 64.9 61.9 58.9 64.6

CART 44.3 61.6 65.4 78.1 63.5 58.6

RF 54.9 73.0 72.7 85.6 72.6 69.1

AB 57.3 63.8 70.8 74.4 67.1 64.4

LB 66.7 66.7 57.1 51.1 62.5 65.4

SVM 57.3 69.0 72.2 79.4 69.9 69.5

NN 61.6 62.8 72.4 73.1 68.2 67.7

Table 3. Performance of GLMN, LR, CART, RF, AB, LB, SVM, and NN obtained with M-I analysis.
The values represent sensitivity, positive predictive value (PPV), negative predictive value (NPV),
specificity and accuracy averaged over the values obtained on each resample.

Technique Sensitivity PPV NPV Specificity Accuracy AUC

GLMN 26.5 66.0 59.5 68.1 60.3 62.8

LR 54.7 57.9 65.2 68.1 62.1 64.1

CART 40.0 56.6 60.9 74.3 58.9 57.2

RF 50.6 64.2 65.7 76.7 65.0 66.7

AB 56.5 62.1 67.5 72.4 65.3 68.0

LB 50.0 61.2 64.8 72.5 62.5 58.9

SVM 66.5 57.7 69.2 60.5 63.2 63.6

NN 28.8 58.2 59.1 83.3 58.9 61.9
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Table 4. Performance of GLMN, LR, CART, RF, AB, LB, SVM, and NN obtained with KNN-I analysis.
The values represent sensitivity, positive predictive value (PPV), negative predictive value (NPV),
specificity and accuracy averaged over the values obtained on each resample.

Technique Sensitivity PPV NPV Specificity Accuracy AUC

GLMN 24.1 64.8 59.4 89.5 60.3 62.4

LR 54.1 57.6 64.9 68.1 61.8 63.2

CART 45.3 54.4 61.2 69.5 58.7 57.8

RF 50.6 64.2 65.7 76.7 65.0 66.7

AB 53.5 60.2 65.3 71.0 63.2 65.4

LB 60.7 60.3 68.8 67.9 65.0 64.2

SVM 53.5 57.2 64.3 67.6 61.3 62.2

NN 55.9 58.5 65.9 68.1 62.6 64.1

Agreement between MLTs’ predictions was assessed on MLTs obtained with CC analysis since it
was the approach that returned the highest predictive performances. Cohen’s Kappa estimates, along
with their 95% CIs, between each pair of MLTs are shown in Table 5. Overall, all the techniques showed
moderate agreement. The highest indexes values were observed for the pair GLMN–LB, SVM–LR,
NN–RF, AB–SVM, and AB–LR, which show an almost perfect agreement between predicted classes.

Table 5. Agreement between the class predicted by pair of machine learning techniques (MLTs) with
complete case (CC) analysis. The values represent the point estimates of Cohen’s Kappa index along
with their 95% CIs.

NN LB SVM LR AB CART RF

GLMN 0.8
(0.64–0.95)

1
(1–1)

0.75
(0.59–0.91)

0.75
(0.59–0.91)

0.75
(0.59–0.91)

0.8
(0.65–0.95)

0.77
(0.61–0.93)

NN _ 0.77
(0.61–0.93)

0.51
(0.35–0.68)

0.51
(0.35–0.68)

0.51
(0.35–0.68)

0.92
(0.85–1)

1
(1–1)

LB _ _ 0.54
(0.38–0.7)

0.54
(0.38–0.7)

0.54
(0.38–0.7)

0.73
(0.6–0.86)

0.69
(0.55–0.83)

SVM _ _ _ 1
(1–1)

1
(1–1)

0.55
(0.39–0.71)

0.51
(0.35–0.68)

LR _ _ _ _ 1
(1–1)

0.55
(0.39–0.71)

0.51
(0.35–0.68)

AB _ _ _ _ _ 0.55
(0.39–0.71)

0.51
(0.35–0.68)

CART _ _ _ _ _ _ 0.92
(0.85–1)

We evaluated the impact of predictors in identifying patients that had at least one hospitalization
using GLM, LR, CART and RF trained with CC, i.e., the approach that showed the best performance.
Regarding GLMN, predictors that had a coefficient different from zero were identified as having a
predictive value. Among them, predictors were considered as “important” if the likelihood ratio test
showed a p-value less than 0.05 for LR, whereas covariates that reduced the predictive error of the
models with permutation methods were labelled as important for CART and RF [61]. Table 6 shows
which covariates were identified to have an impact on identifying patients with at least a hospital
admission. Had suffered from acute myocardial infarction (AMI), ischemic cardiomyopathy and
suffering from comorbidities were identified as important predictors by all the four MLTs.

GLMN with CC analysis, i.e., the model found to have the best performance, was re-fitted on
10,000 bootstrap resampling to estimate coefficients’ distributions (median and 95% CI) to understand
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the impact that each predictor has in the model performance. ORs’ distributions (median and 95%
CI) for 10,000 bootstrap repetitions for each one of the variables included in the model are shown in
Table 7. Suffering from comorbidities, higher levels of creatinine and pulmonary pressure, and had
suffered from AMI and ischemic cardiomyopathy were found to be significantly associated with a
higher risk of hospitalization.

Table 6. Covariates identified by the MLTs trained with CC to have predictive value in identifying
patients that had a hospitalization. The symbol “X” denotes that the covariate had predictive value,
whereas an empty cell denotes that the covariate had no predictive value. The symbol “_” was used for
the MLTs for which it was not possible to identify covariates that had a predictive impact.

GLMN LR CART RF AB LB SVM NN

Gender (female vs. male) _ _ _ _
Age _ _ _ _
BMI _ _ _ _

Medical history _ _ _ _
AMI (yes vs. no) X X X X _ _ _ _

HF etiology–ischemic cardiomyopathy (yes vs. no) X X X X _ _ _ _
HF etiology–dilated cardiomyopathy (yes vs. no) _ _ _ _

HF etiology–valvulopathy (yes vs. no) _ _ _ _
COPD (yes vs. no) X X _ _ _ _

Anemia (yes vs. no) X _ _ _ _
Comorbidities (yes vs. no) X X X X _ _ _ _

Clinical examination _ _ _ _
Heart rate X _ _ _ _

BNP X X _ _ _ _
Pulmonary pressure X X X _ _ _ _

NYHA class X _ _ _ _
Creatinine X X X _ _ _ _

Mean years between clinical examinations X X X _ _ _ _

BMI: body mass index; AMI: acute myocardial infarction; HF: heart failure; COPD: chronic obstructive pulmonary
disease; BNP: beta-type natriuretic peptide; NYHA: New York Heart Association.

Table 7. Coefficients’ distributions (median and 95% CI) for 10,000 bootstrap repetitions of the model
found to have the best performance, i.e., GLMN (alpha = 0.005, lambda = 1/6).

95% CI lower limit Median 95% CI upper limit

Gender (female vs. male) 0.80 0.98 1.19
Age 0.99 1 1.02
BMI 0.98 1 1.01

Medical history
AMI (yes vs. no) 1.08 1.41 1.74

HF etiology—ischemic cardiomyopathy (yes vs. no) 1.05 1.31 1.57
HF etiology—dilated cardiomyopathy (yes vs. no) 0.73 1 1.36

HF etiology—valvulopathy (yes vs. no) 0.71 0.90 1.15
COPD (yes vs. no) 1 1.22 1.49

Anemia (yes vs. no) 0.96 1.19 1.40
Comorbidities (yes vs. no) 1.12 1.34 1.44

Clinical examination
Heart rate 0.99 1 1

BNP 1 1 1
Pulmonary pressure 1 1.01 1.02

NYHA class 0.72 0.91 1.14
Creatinine 1.01 1.21 1.40

Mean years between clinical examinations 0.99 1.08 1.17

BMI: body mass index; AMI: acute myocardial infarction; HF: heart failure; COPD: chronic obstructive pulmonary
disease; BNP: beta-type natriuretic peptide; NYHA: New York Heart Association.
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4. Discussion

The present study aimed to compare the performance, in terms of accuracy level, of different
MLTs in predicting hospital admission of patients with HF enrolled in the GISC study. The GLMN
was found to have the best performance in predicting the hospitalization, with an average accuracy,
positive predictive value and negative predictive value of 81.2%, 87.5%, and 75%, respectively, even
though the performance of the other MLTs was quite poor. From the clinical point of view, MLTs
represent a promising opportunity to develop models able to predict hospital admission/readmission
of HF patients based on data characterized by complex relationships and non-linear interactions. Not
least, in the long run, we can expect that the predictive models will help the clinicians by identifying
specific profile of patients (in terms of clinical characteristics) at risk of hospital admission.

The present work showed that, with the exception of GLMN, the predictive performance of the
MLTs was quite poor. However, we cannot make conclusions about the usefulness of such methods
in developing predictive models using clinical data. We cannot rule out that using a larger database
and/or more detailed clinical information would improve the predictive performance, especially if the
clinical data employed to predict the hospitalizations are characterized by complex relationships and
non-linear interactions. Nevertheless, in such settings and the limited information available, it is not
uncommon to don’t observe an overperformance of logistic regression as compared to other MLTs [62].
The work of Frizzel JD. et al. [13] did not find out an outperformance of MLTs compared to more
traditional techniques in predicting hospital readmission of HF patients, and that of Dai W. et al. [14]
showed a similar performance of MLTs, including logistic regression, in predicting hospitalizations of
heart disease patients. Choosing on a priori basis the model which is most likely to be more appropriate
is not an easy task. Some guidance has been reported in literature [63], and we largely followed this in
approaching this work. A re-arranged synthesis of the main characteristics of the algorithm has been
reported as Supplementary Material.

As concerns hospitalization predictors, surprisingly, the BNP and the NYHA class were found
to be predict hospital admission only by the RF and the CART approaches. Such results could be
related to the sample characteristics—which were homogeneous in terms of NYHA class since about
two-thirds of the patients had an NYHA class of 3—or to the sample size which could be not enough
to identify such characteristics as significant predictors of hospitalization.

It is worth pointing out that it is difficult to compare results from different studies that employ
MLTs to predict hospital admission/readmission in HF patients. Each study employed a different type
of information, including only clinical data collected in the context of previous hospital admissions
(when hospital readmission is predicted), health claims data, and both clinical and administrative data.
Undoubtedly, the added value of the present study is that the data have been derived from a study in
which clinical information is collected beyond the hospital setting (since not only hospital cardiologists,
but also community health district cardiologists and general practitioners are involved in the data
collection). This is crucial to better characterize individual health status. We cannot restrict our analysis
to information collected during a single event of interest (e.g., the hospitalization). The individual
medical history is a constant flow of information related to every single aspect of a patient’s life.
Considering such a framework, it becomes even clearer the relevance of adopting appropriate data
analysis techniques to exploit such complex information. The exploitation of such complex information
is crucial to improve patients’ clinical management but also related costs. In the case of HF, an overall
cost of more than $100 billions per year (including both direct and indirect costs) has been estimated [64].
Application of MLTs can substantially contribute to the creation and dissemination of new knowledge,
and thus improving the planning of health care services cost-effectively [65] (e.g., by concentrating the
resources on HF patients at high risk of hospitalization to avoid disease relapse).

The main limitations of the present study are represented by the low number of records used to
train the models and the lack of an external validation dataset. Such aspects could lead to the risk
of overfitting and, consequently, undermine the reliability of the algorithms; further data should be
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collected to improve models’ implementation. Since the data collection of the GISC study is ongoing,
we expect to improve further the implementation of MLTs to predict hospital admission of such patients.

5. Conclusions

Present findings suggest that MLTs may be a promising opportunity to predict hospital admission
of HF patients by exploiting health care information generated by the contact of such patients with the
health care system, in the context of the GISC study. However, further research is needed to improve
their accuracy level and to better evaluate their usefulness in clinical practice.
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